Lesion Detection in Retinal Images using Back Propagation Neural Network

نویسنده

  • Himanshu Saxena
چکیده

Exudates are one of the chief signs of diabetic retinopathy, which is a main root of blindness and can be prevented with an early screening process. In this article, authors have attempted to detect exudates using back propagation neural network. The publicly available diabetic retinopathy dataset DIARETDB1 has been used in the evaluation process. To prevent the optic disk from interfering with exudates detection, the optic disk is eliminated. Significant features are notorious from the similes after preprocessing by using two methods: Decision tree and GA-CFS method are used as input to the BPN model to detect the exudates and non-exudates at pixel level. The results attest that, BPN recital with features identified by Decision tree and GA_CFS loom has out performed the performance of BPN with all inputs. The BPN classifier best recital was found with Sensitivity of 96.97 %, Specificity of 100% and classification accuracy of 98.45%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morphological Exudate Detection in Retinal Images using PCA-based Optic Disc Removal

Diabetic retinopathy lesion detection such as exudate in fundus image of retina can lead to early diagnosis of the disease. Retinal image includes dark areas such as main blood vessels and retinal tissue and also bright areas such as optic disk, optical fibers and lesions e.g. exudate. In this paper, a multistage algorithm for the detection of exudate in foreground is proposed. The algorithm se...

متن کامل

Detection of Microaneurysms in Retinal Angiography Images Using the Circular Hough Transform

This paper presents an automated method for detecting microaneurysms in the retinal angiographic images by using image processing techniques. In the presented method, in order to fade or remove the pseudo images, first retinal images are pre-processed. Then microaneurysms are identified by circular Hough transform. In the existing methods of dete...

متن کامل

Exudates Detection with DBSCAN Clustering and Back Propagation Neural Network

Diabetic Retinopathy (DR) is the third biggest cause of blindness in India. Hard exudates are the primary signs of DR. In this paper the authors propose a novel hybrid mechanism for the detection of Exudates based DBSCAN clustering algorithm. Unlike other clustering algorithms, DBSCAN clustering does not require the number of clusters to be specified. Classification of regions is being done usi...

متن کامل

Detection of Microaneurysms in Retinal Angiography Images Using the Circular Hough Transform

This paper presents an automated method for detecting microaneurysms in the retinal angiographic images by using image processing techniques. In the presented method, in order to fade or remove the pseudo images, first retinal images are pre-processed. Then microaneurysms are identified by circular Hough transform. In the existing methods of dete...

متن کامل

Neural Network Performance Analysis for Real Time Hand Gesture Tracking Based on Hu Moment and Hybrid Features

This paper presents a comparison study between the multilayer perceptron (MLP) and radial basis function (RBF) neural networks with supervised learning and back propagation algorithm to track hand gestures. Both networks have two output classes which are hand and face. Skin is detected by a regional based algorithm in the image, and then networks are applied on video sequences frame by frame in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016